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ON THE CONVERGENCE OF THE METHOD OF VARIABLE ELASTICITY PARAMETERS* 

S. E. UMANSKII 

Convergence of the method of variable elasticity parameters /l/ is proved for the 
boundary value problems of the deformational thermoplasticity of an anisotropic and 
inhomogeneous body. The proof of convergence of the method of elastic solutions is 
extended to the anisotropic case /2- 7/ in order to provide a preliminary result, 
and the latter is used to deduce the existence and uniqueness of the solution of 
the boundary value problem in question. 

It seems that until now no satisfactory proof of convergence of the method of variable 
elasticity parameters has been produced. The convergence of the method of elastic solutions 
for an isotropic homogeneous body has been proved in /5/. The inhomogeneous case was dealt 
with in /7/, and a more rapid version of the method was given in /3/. 

We write the equations of state of a plastic, anisotropic and inhomogeneous material in 
the form 

e = DE - D& - q, (1) 

Here o,e,o,,eo are six-dimensional vectors of stress, deformation, initial stresses and in- 
itial, e.g. thermal, structural and residual nonelastic deformations, determined in such a 
manner that the vector s = (e,, .+,dz, ezy,eyz, ezx) corresponds to the symmetric second rank tensor 
Eij and D is a positive definite symmetric matrix dependent on the deformations and coincid- 

ing, in the case of an undeformed body, with the matrix D, of elastic moduli. 
Passing to the formulation of the boundary value problem, we define the operators B and 

B* with the help of the following expressions: 

(3) 

Here u denote the displacements, $= (&,q%} is a pair of three-dimensional vector functions 
of the mass forces and surface loads defined, respectively, in a bounded regular domain !2 and 
on a fixed segment a$ of its boundary asd. The derivatives with respect to the coordinates 
in (2) and (3) should be regarded as classical or generalized, depending on the differential 
properties of u and 0. We note that the operator B*is conjugate with B in a certain manner, 
since when II=0 on dR I rt,n , we have an identity 

S{Bu..)d~~-.S(a,B*o)d!~.tJSQ(u.B*o)df 

t? il 

Here ( , ) denotes an Euclidean scalar product of three-dimensional vectors, and by the scalar 
product ( , } of the stress (deformation)vectors we understand the contraction of the tensors 
corresponding to these vectors. 

We assume that the displacements u are elements of the functional space liconsisting of 
three-dimensional vector functions, square summable in n together with their first order part- 
ial derivatives, and equal to zero on a,n= d!!:&R. The results of /8,9/ imply that the space 
l! will be complete with respect to the norm induced by the scalar product 

Here B is an arbitrary, positive definite symmetric matrix the components of which are bound- 
ed functions of the coordinates measurable in St. Combining the equations of state (1) with 
the geometrical (2) and static (3) conditions of the problem in question, we obtain the follow- 
ing equation for the displacements 14: 

Ku =: R, K = B*DB, R -= B*D,e, _1- B’a,, -+ q E Y, ‘4 : I.’ (Q):’ X 1;: (&!!), (5) 

Here the operator K acts from the space I: into the load space Vc Ii' conjugate to E'. We 
note that RE~V only when Do&,, and e0 have generalized first order derivatives square sum- 
mable in G. 
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In the case when D is bounded and independent of the deformations and hence of the 
displacements, while I! satisfies the known conditions of regularity, equation (5) has, as 

was shown in /8,9/, a unique generalized solution. Under these conditions the operator K 
is elliptic, positive definite, and has a bounded inverse I<-'. 

In the case when D is deformation dependent, the proof of existence of a solution of (5) 
is apparently known only for an iostropic material /6,10/. To show the existence and unique- 
ness of the solution of (5), we shall establish the convergence of the sequence of approximate 

solutions obtained with the help of the method of elastic solutions, and shall utilize the 

completeness of the space 1. 

Let us specify the properties of the matrix D. We introduce, for the anisotropic body, 
the generalized spherical stress and deformation tensors IJ* and E*, generalized deviators 8 
and e , and their intensities r and y, using the relations 

e* := Nro, E* = NE, 8 = JTo, e=Je, 7 = (m, (D,-'s, s))"'. y = (mo-' (Da e, e))"' (6) 

Here N is a dimensionless matrix determined by the character of the anisotropyofthematerial 

and independent of the level of deformations, J= I-N where I is a unit matrix,%,= hn.+,d%/dy 

and the index T denotes transposition. 
The properties of the matrix N must ensure that the following relations hold: 

N2: N, J2== J, NJ== 0 

Generalizing the equations of the deformation theory of plasticity to the anisotropic 

case, we assume that in the course of the deformation process a* and E* are connected by the 
linear relation 

o* ~~ D,E* 7 D,Ne (7) 

and r, y are connected by a continuous relation unique for all types of the state of stress. 

In addition, the function r(v) has a piecewise continuous right derivative m(v) and the 
following inequality holds for almost all y~IO,cal: 

C<m,g,(y)~r(y)iydm,<oo (8) 

where m, is a positive constant. 

According to the assumption that a unique curve 7(y) exists, from (1) and (6) it follows 

that the relation between the generalized deviators is given by the formula 

s = (m"y)-'r (~)D,JE (9) 

The relations (T), (9) coincide, for the corresponding choice of the matrix N , with equations 

obtained in /ll/ (see also /12/) and degenerate, in the case of an isotropic body, to theusual 

relations of the deformation theory of plasticity. 

We write, in accordance with (7) and (9), the matrix D and operator K in the form 

D = D, -D,, D,= [I - (moy)-‘~(y)]D,J, K = KO - K,, K, = R*D,B K, = R*D_\R 

Since D,l depends on the deformations, so does K,, and it follows that they also depend on 

the displacements. As a result, equation (5) assumes the form 

K,u = K, (u)u + R (10) 

We shall seek a solution of (10) in the form of a limit of the sequence Iu"rz:,=, of approximate 

solutions constructed with the help of elastic solutions according to the formula 

,,"+I zz K,-' (K, (,,'L)"'L -+ R) (n = 1.2, ., co) 
By virtue of the completeness of the space l;, the sufficient condition for the limit to 

exist is, that the mapping A:U- U given by the operator Av- K,-‘KA((v)v be contracting, i.e. 

that 
3h < 1 11 Av, - Av, II d 3. /I v, - ~~11. vv,, vy E ti 

(11) 

To confirm that the property (11) holds, we estimate the norm of the (Fre/chet) derivative A'(V) 

of the operator A. According to the rule of differentiation of operators existing in the 

Banach space /13/, the derivative shown is a linear operator acting on the space ii, and is 

defined by the relations 

A’ (v)h =: K,-‘K:, (v)h + K,-’ (Kb’ (v)h)v, Vh E I,’ , (K,’ (v)h)v = -(yn~&~B* (t (y) / y - dr ! dy) {D,JBv, JBh)D,JDr 

The operators K,-'K& (v) and KU-' (Kh' (v).) Y are self-conjugate relative to the scalar product (4), 

provided that E D,,. Since the norm of the self-conjugate linear operator 1, can be deter- 

mined in the Hilbert space by the relation 

II L IIF. cup II (Lh, h)s I (h, &-'I 
we have 

,,Cz1 
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Q1 = [I - (,,,,,y)-‘T (y)](Bh, D,Bh), & = -(‘1,oy)-’ (7 i y ~ do i W(D,JBv, BhY 

Transforming Qz with the help of the Schwartz inequality and taking into account (6), (8), 

we have 

From the inequality (12) it follows that the method of elastic solutions converges independeti- 

ly of the initial approximation. Indeed, in accordance with the mean value theorem /13/ we 

have II AV: - Av, IiD0 < v~:,,“,“x II A’ (tv 2 i (1 -q \.I) II”. x II v2 - rll’“, B (1 - mn i ?I) II VP - v1 Il,,o 

This means that condition (11) holds, and from this the convergence of the elastic solutions 

and the uniqueness of the solutions of (5) both follows. When v _", the expression (12) 

yields an asymptotic estimate for the rate of convergence of the sequence uli to u, over the 

roots 1. The rate of convergence is determined in accordance with /14/, as follows: 

r = lilrl,,_, ?up I/ u” - u /j”n = I/ .\’ (u) /I < 1 - inf (VI;’ dr (y /v)/dy) 
R (13) 

The quantity r is chosen to characterize the rate of convergence, since, unlike the 

coefficient q = lirll,__ sup (11 u'" - " II i I/ un--l - ” 11) , it does not change when the space c' is re-normed. 

In accordance with the method of variable elasticity parameters, the solution II of (5), 

which represents a fixed point of the operator (:: I-- II such that C (v) = K-’ (v)R. is sought 

in the form of a limit of the sequence fU")ng=l where un == K-1 (tP1)R. The derivative C' (v) of 

the operator C(v) is given, at V= u , by the relation 

C' (II) h = - K-’ (II) (K’ (u) h) A-1 (u) R .T K-’ (II) (Ka (11) h) u 

By virtue of the properties of the solution II and the restrictions imposed on the func- 

tion r(v), the matrix 1) corresponding to the distribution of deformations associated with 

the displacements u, satisfies the conditions imposed on the matrix E. It can therefore 

be used in constructing the scalar product (,)” in L; and of the norm 11. IID equivalent to the 

initial norm II.jl,,u. Using the Schwartz inequality and the expressions (6), (8) and remember- 

ing that the matrix D can be represented by a sum of nonnegative matrices D,,N and T (uI~,~)-~D,J, 

we have 

;j C’ (u) /I,) = Slql 
(K-‘(KA (u) h) u. h), 

llEl (11. W” 
(14) 

RI m,-‘dr i d7 (D,JBh, Bh), R, - t (may)-l (D,JBh, Rh) 

The estimate (1.4) and the properties of the function r(y) together imply that II C’ (11) II” < i > 
therefore II represents the point of attraction of the iterative process. This means that 

the method of variable elasticity parameters converges, provided that the initial approximat- 

ion 11" is not too far from the solution II and the asymptotic estimate of the rate of converg- 

ence r is determined by the right hand side of the inequality (14). 
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